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Fn isomorphic to A(V)

Theorem:The set Fn of all nxn matrices over 
F is an algebra over F. If V is an n-

dimensional vector space over F then A(V) 
and Fn are isomorphic as algebras over F



Proof: Given: dim (V) = n where V is vector space over F 

   dim [A(V)] = n
2
 

 Let T  A(V) 

 Let {v1,v2,-----vn} be a fixed basis of V 

 Now, viT is uniquely expressible as a linear combination of the basis 

elements v1,v2,…,vn 

   vi T = 
=

n

j 1

 aij vj       ( i = 1,…n) → (i) 

  



So each T   A(V) has associated with it a unique matrix 
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      = (aij) nxn over F. 

This m(T) is called the matrix of the linear Transformation T   A(V) relative to the 

basis {v1,…,vn} of V   



Conversely if A = (aij) is a given nxn matrix over F. Then, for a given basis {v1,…,vn} 

of V, if we define T:V → V by viT = 
=

n

j 1

aij vj, ( i =1 to n), then T becomes a Linear 

Transformation on V. 

       Let, Fn = {(aij) nxn / aij   F} 

 Let (aij), (bij)Fn. 

 Then (aij) = (bij) iff aij = bij   i,j 

 Now, consider the mapping 

 A(V) → Fn defined by              T →m(T) = (aij) → (2) 

              This is a one – one mapping of A(V) onto Fn. 

   we can define +,multiplication, scalar multiplication on Fn, 

 since A(V) is an algebra. 



(i) Addition in Fn 

 Let A = (aij) & B = (bij) be element in Fn. Suppose, further that, under the 

mapping (2), 

 T   A & S   B. 

 Then, viT = 
=

n

j 1

 aij vj &  

      vi S = 
=

n

j 1

 bij vj 

 so that A = m(T) & B = m(S) 

 Now, by the definition of addition of Linear transformation it follows that, 

 vi (T+S) = viT + viS 

          =  aij vj +  bij vj 

   we see that under the mapping (2) 

 T + S  (aij + bij) , 

 we define addition in Fn as follows: 

 (aij) + (bij) = (aij + bij) →  (3)             m(T) + m(S) = m(T+S) 

 



(ii) Multiplication in Fn 

 By the definition of a product of linear transformation in A(V), we have. 

 vi (TS) = (viT)S 

             = (
k

aik vk) S 

        =  
k

aik (vkS) 

             = 
k

 aik (
j

bkj vj) 

   vi (TS) = 
j

(
k

aik bkj) vj   [By rearranging the order of summation] 

 Hence under the mapping (2), 

   TS   (
k

aik bkj) 

 Accordingly we definition multiplication in Fn as follows: 

 (aij) (bij) = (
k

 aik bkj) ------ (4) 

 i.e., m(T) . m(S) = m(TS) 

 



(iii) Scalar multiplication in Fn 

 If c   F, we have by the definition of scalar multiplication in A(V), 

 vi (cT) = c(viT) 

        = c[
j

aij vj] 

        = 
j

(caij) vj 

 Accordingly we define scalar multiplication in Fn as follows: 

 c(aij) = (caij) -------- (5) 

 ie) m(cT) = cm(T) 



We have now defined addition multiplication and scalar multiplication in Fn in such a 

way that, all of these operations are preserved under the mapping (2) 

     

That is, if under this mapping T   m (T)  &  S m (S) 

                      then,              T+S   m (T+S)      =  m (T) + m(S) 

                                              TS     m (TS)      =   m (T) m (S) 

                                                cT    m (cT)      =   cm (T)                      for CF 

                        Thus we have shown that the mapping  (equation (2) is an 

isomorphism of A (V) onto Fn   as algebras) 

 

                        Hence the set Fn
   

of all nxn matrices over F is an algebra over F. If V is 

an n – dimensional vector space over F, then A(V) and Fn are isomorphic as algebras 

over F.                     

 



Definition: 

   (i)  Zero Matrix: 

             * Zero matrix is a matrix all of whose entries are zero. 

             * The Zero element of an algebra Fn  is  the nxn zero matrix. 

              

 

  (ii)   Unit matrix: 

• Unit matrix is the matrix whose diagonal elements are one and whose 

entries elsewhere are zero. 

• We write it as ‘I’. 

• The unit element of Fn   under multiplication is I. 

     

 

 

 (iii)   Scalar matrix: 

             If  cF  then, cI is called Scalar matrix. 

 

  Example: 

         cI=         
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 (iv)   Triangular matrix: 

 

                 The matrix A   Fn   is called triangular if all the entries above the main 

diagonal are zero (0).   

                 If  all the entries below the main diagonal are zero, the matrix is also called 

Triangular.        

 

(v)  Invertible (or) Regular (or) non – Singular Matrix: 

 

                           The matrix AFn  is called invertible or non – singular if there exists 

BFn   such that AB=BA =I  the matrix  B is called the inverse of A and A
-1

 =B 

 

Note: 

       Since A(V)   Fn,  TA (V) is invertible iff m(T) has inverse in Fn. 

 



Theorem:  

         Let V be a vector space of dimension n over F and let TA(V) .  If m1 (T) and 

m 2(T)  are the matrices of T, relative to two bases {v1, ….., vn }  and  {w1, …., wn } of  

V, respectively.  There is an  invertible matrix  C in  Fn  such that m2(T) = Cm1(T)C
-1 . 

 Proof: 

      Given, dim (V) =n; TA (V);  

                  m1 (T) is the matrix corresponding to {v1, …., Vn} 

                  m2 (T) is the matrix corresponding to {w1,…,wn} 

            Let m1 (T)  = (aij) where viT  = 
=

n

j 1

       aij vj  

            Let  m2 (T)  = (bij) where wiT  =  
=

n

j 1

 bij wj 

        

We define 

           S:V →V   by  viS  = wi   (i = 1 to n)then  S  is a Linear Transformation  on V. 



Claim:  S is onto 

      Let y     V  (co domain) 

            y  =  c1 w1 + c2 w2 + -----+ cn wn . 

Let       x = c1v1 + c2v2 + -----+ cnvn  

     Then    x   V 

Now  xS  = (c1v1+ ----- + cnvn ) S. 

               =  c1 ( v1S) + ----- + cn  (vnS) 

               = c1w1 + c2w2 + ----- + cn wn        = y 

       .:  for all y   V there exists x   V   such that,  xS  =y 

          .:   S  is  onto     S   is  invertible 

                                     S
 -1  

 exists 

 



Now,    wiT       =   
=

n

j 1

  bij   wj  

                   (vi S) T     =    
=

n

j 1

 bij  (vjS)      (Since   wi   =  viS)    

            vi (ST)         =    
=

n

j 1

  (bij vj)S        [  S is linear ] 

        vi (STS 
-1

)           =     
=

n

j 1

  bij vj           (SS
-1

  =  I)  

         m1 (STS 
-1

)    =      (bij )     =  m2 (T) 



We know that 

           T   m1 (T) is  an isomorphism  of  A (V)  onto  Fn. i.e., A(V)   Fn. 

       m1(S) m1 (T) m1 (S
-1

)  =  m2  (T) 

         

                  C m1 (T) C
-1

    =  m2  (T) 

       

Where   C = m1 (S)   Fn is invertible. 

                        

                      Hence the theorem is proved.  The matrix C =m1 (S) is called the matrix 

of the change of basis.     



TRIANGULAR FORMS.

        Definition: 

                           Invariant subspace. 

                                           Let V be n – dimensional vector space. over F.   Let   W be 

a subspace of V & let T   A (V)   then W is invariant under T if WT    W 

 

       Lemma:  

                            If the subspace W of V is invariant under T  A(V),  then T induces 

a linear transformation T on the quotient space V/W defined by (v+W) T  = vT+ W 

  

                            If p1(x) is the minimal polynomial of T  over F, and if  p(x) is that 

for T then, p1(x) | p(x). 



Proof 

 

                          Given: W is an invariant subspace of V and TA(V) 

                            W T   W 

                           We know that   V/W = {v+W / vV} 

 
We know that   T   A(V)   T:V→V is Linear Transformation.    

                                                    vT V                      

                                                    vT + W   V/W 

           Define T : V/W→V/W by (v+W) T  = vT +W   v+W   V/W, vV 

 



Claim: 1 

                           T is well defined 

      Let       v1+W = v2+W 

                                    v1-v2   W 

                             (v1-v2) T W T                 [  W T   W] 

                             (v1-v2) T   W 

                             v1T – v2TW 

                             v1T + W = v2T + W 

                            (v1+W)T = (v2+W) T  

                            Hence T  is well defined 



Claim: 2 

                           T is a linear Transformation on V/W 

                            Let x,y   V/W   x = v1+W 

                                                           y = v2+W,      v1,v2   V 

                            Now            (x+y) T = [(v1+W) + (v2+W)] T   

                                                             = [(v1+v2) + W] T  

      = (v1+v2) T+W                 [ by def of T ] 

      = (v1T + v2T) + W            (since T is linear) 

       = (v1T+W) + (v2T+W)     [by cocet +] 

      = (v1+W) T + (v2+W) T  [def of T ] 

      = xT  + yT  

 



                           Let  F 

                                              ( x) T  = ( (v1+W) T  

                                                            = ( v1+W) T  [ scalar in V/W] 

                                                            = ( v1) T+W [definition of T ] 

     =  (v1T) +W [  T   A(V)] 

                                                            =  (v1T+W)  [by scalar multiplication in V/W] 

     =  ((v1+W) T ) 

     =   (xT ) 

                                                 T  is a linear Transformation on V/W 

 



Claim: 3  If T satisfies a poly f(x)   F[x] then so does T  

 

                               Let x = v+W   V/W 

                               Now, x ( 2T ) = (v+W) ( 2T ) 

                                                    = vT
2
+W 

                                                    = (vT) T+W 

        = (vT+W) T  

                                                    = (v+W) T T  

        = (v+W) (T )
2
 

        = x(T )
2
                x   V 

            2T  = (T )
2
 

                                  

                            In general kT  = (T )
k 

for any non-negative integer k 



Let f(x)  = a0 + a1x +-----+ amx
m

,  aiF 

                            f(T)  = a0 I + a1T +-----+ amT
m

  

        )(Tf  = a0 I + a1T  + a2(T )
2
 +-----+ am(T )

m
   

            = f(T ) 

                                       Suppose T is satisfies f(x)  f(T) = 0 

                                                                                   )(Tf  = 0 

                                                                                   f(T ) = 0 

             T  satisfies f(x) 

 

 Claim: 4  P1(x) divides p(x) 

                                     Let p1(x) be the minimal polynomial of T  over F 

    Let P (x)  be the minimal polynomial of T over F 

                                     Given: p(x) is the minimal polynomial of T  

                                      p(T) = 0 & q(T)  0 such that deg (q(x)) < deg (p(x)) 

   p(T) = 0 [  T satisfies p(x)  T  satisfies p(x)] 

                                      p1(x) | p(x) [  p1(x) is the minimal polynomial of T  & 

                                                                          p(x) is a polynomial satisfied by T ] 

                                      _______________ x ________________ 

 



Theorem: 

                                      If  T   A(V) has all its eigen values in F then 

there is basis of V in which the matrix of  T is triangular  

 

            Proof: 

            We prove this theorem by induction on dimF (V) 

 If dim (V) = 1 then dim (A(V)) = 1 so every element of A(V) is a   scalar 

                              The theorem is true for this case. 

Now, we assume that the theorem is true for all vector space over  F of  

dimension n-1  & let V be  of dimension n over F.    

    It  is given that TA(V) has all its eigenvalues in F 

       Let  1   F be an eigen value of T 

                      there exists v1 0 in V such that  v1T =  1 V1 



Let W = {av1/aF} 

                 W is the subspace whose basis is {v1} 

                 dim (W) = 1 

 

        Claim:   W is invariant under T    ie, WT   W 

                               Suppose x   W   x = av1 ,  a F 

                               Now, xT W T & xT = (av1) T 

                                                                  = a(v1T) 

                                                                  = a( 1v1)  

                    = (a 1) v1 

                           = bv1 w  

                                xT W T    x T   W    

                                WT   W W is invariant under T 



Def  V  =  V/W 

                               dim (V ) = dim V – dim W  = n-1 

      Then, T induces a linear transformation T  on V  

                             such that,  p1(x) divides p(x) [  by lemma ] 

                             where, p1(x) is the minimal polynomial of T over F & 

                                          p(x) is the minimal polynomial of T over F 

                               every root of p1(x) is also a root of p(x) 

                               T  has all its eigen values in F 

                                                             since T has all its eigen values in F 



Now dim (V ) = n-1 & T : V →V  has all its eigen    values in F 

              So, by induction hypothesis, there exists a basis { v 2,…, v n} of V  

                         such that the matrix of T  is triangular. 

                              ni 32  

                 

n

i

v

v

v

v



3

2































nnninn

iiii

aaaa

aaa

aa

a











32

32

3332

22

0

0

00

000

 





















+++=

+++=

+=

=

nnnnnn

iiiiii

vavavaTv

vavavaTv

vavaTv

vaTv









3322

3322

3332323

2222

______ (1) 

Now,  

              Tv2  = a22 v 2 

           (v2+w) T  = a22 (v2+w) 



  v2T+w = a22 v2 + W  

                v2T - a22 v2   W = {av1/aF} 

           v2 T – a22 v2 = a21 v1 

         v2 T = a21 v1 + a22 v2 

 

Similarly v i T  = ai2 v 2 + ai3 v 3 +-----+ aii v i 

  vi T = ai1 v1 + ai2 v2 +------+ aii vi 



Thus  including v1 T =  1v1 we have obtained 

             v1 T = a11v1 where a11 =  1, 

             v2 T = a21 v1 + a22 v2 

                

             vi T = ai1 v1 + ai2 v2 +-----+ aii vi 

                

             vn T = an1 v1 + an2 v2 +----+ ann vn 

By the definition of the matrix of a linear transformation we see that the 

matrix of  T is 
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                                               which is triangular 

                                        _________________ x _______________ 


